Electromechanical coupling and design considerations in single-layer MoS2 suspended-channel transistors and resonators.
نویسندگان
چکیده
We report on the analysis of electromechanical coupling effects in suspended doubly-clamped single-layer MoS2 structures, and the designs of suspended-channel field-effect transistors (FETs) and vibrating-channel nanoelectromechanical resonators. In DC gating scenario, signal transduction processes including electrostatic actuation, deflection, straining on bandgap, mobility, carrier density and their intricate cross-interactions, have been analyzed considering strain-enhanced mobility (by up to 4 times), to determine the transfer characteristics. In AC gating scenario and resonant operations (using 100 MHz and 1 GHz devices as relevant targets), we demonstrate that the vibrating-channel MoS2 devices can offer enhanced signals (than the zero-bandgap graphene counterparts), thanks to the resonant straining effects on electron transport of the semiconducting channel. We also show dependence of signal intensity and signal-to-background ratio (SBR) on device geometries and scaling effects, with SBR enhancement by a factor of ∼8 for resonance signal, which provide guidelines toward designing future devices with desirable parameters.
منابع مشابه
Large-scale arrays of single- and few-layer MoS2 nanomechanical resonators.
We report the fabrication of large-scale arrays of suspended molybdenum disulfide (MoS2) atomic layers, as two-dimensional (2D) MoS2 nanomechanical resonators. We employ a water-assisted lift-off process to release chemical vapor deposited (CVD) MoS2 atomic layers from a donor substrate, followed by an all-dry transfer onto microtrench arrays. The resultant large arrays of suspended single- and...
متن کاملSwitching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers.
In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer leng...
متن کاملQuality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators
In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...
متن کاملMobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte
We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte (PE) consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS2 devices (without PE) fabricated on Si/SiO2 have low channel mobility and large contact resistance, bot...
متن کاملDesign, construction and calibration of single channel sun-photometer for study of aerosols
Aerosols are tiny liquid or solid particles suspended in the air have a strong influence on air quality, human health and climate change. Sun-photometer is a tool for measuring the optical and physical characteristics of aerosols by using sunlight at various wavelengths from the Earth surface. In this paper, the design, construction, and calibration of a single channel sun-photometer is present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 47 شماره
صفحات -
تاریخ انتشار 2015